BOOSTED DARK MATTER SIGNALS ENHANCED WITH SELFINTERACTIONS

Gopolang (Gopi) Mohlabeng University of Kansas

based on Phys. Lett. B 743(2015) 256-266 with K. Kong and JC Park

OUTLINE

- Introduction
- Motivation for Dark Matter Self Interactions
- Physics of Boosted Dark Matter
- Sources of BDM
- Detection of BDM
- Conclusions

DARK MATTER

- Dark Matter comprises about 25% of our Universe,
- Astrophysical and Cosmological evidence:
 - ★ Galaxy rotation curves
 - ★ Gravitational Lensing
 - * Bullet cluster
 - ★ Dynamics of structure formation
 - ★ Velocity dispersion
 - ⋆ CMB Maps
 - * ...

Clowe et al

Four strategies for detection

- * Astrophysical Evidence
- * Indirect detection
- * Production at Colliders
- **★** Direct Detection

All complementary and important

www.mpi-hd.mpg.de[available:10/31/14] Strategies: search for Dark Matter Model particle Accelerator production DM » Production in accelarators (LHC) Indirect detection: Direct search for detection annihilation/decay products of \u03c4's (selfantiparticle) » Direct detection: DM γ-nucleus elastic Indirect detection scattering P.Mijakowski 9.IV.2010, Warszawa

- Nature of DM is unknown
- Many Frameworks exist
- Compelling paradigm:

Collisionless Cold Dark Matter

CDM simulations extremely successful at large scales

Planck collaboration 2015: 1502.01582

Potential Problems with CDM

Missing Satellites CDM predicts more satellites than observed

Cusp-vs-cored

CDM predicts cusp density profile, but data fit by cored profile, Weinberg et al: arXiv 1306.0913

Too big to fail
CDM predicts
more
satellites than
observed.
Weinberg et al: arXiv
1306.0913.
Boylan-Kolchin et al: arXiv
MNRAS 415, 2011

CDM predicts too Much Mass in Halos and Subhalos

Proposed Modifications to CDM

- Warm Dark Matter(WDM)
- Properties between HDM and CDM.
- WDM particles have masses ~keV and are ultra relativistic at decoupling. At later times become non-relativistic.
- Free-streaming scale is higher than that for CDM =>
- Primordial density fluctuations supressed compared to CDM. =>
- Less smaller galaxies (Satellites) formed.
- Proposed candidate -> Sterile Neutrino
 - Sommer-Larsden & Dolgov (1999)[Astrophys.J. 551 (2001) 608-623]
 - Kamionkowski & Liddle (1999)[Phys.Rev.Lett. 84 (2000) 4525-4528]
 - Narayanan, Spergel et al(2000)[Astrophys.J. 543 (2000) L103-L106]

francis.naukas.com, Available[08/24/15]

- Self Interacting Dark Matter(SIDM)
- DM particles with strong self-interactions.
- In early Universe, CDM and SIDM are same, collisions very small.
- After decoupling (self-scattering) collisions increase for SIDM => DM particles scatter out from center of Halo.
 - Spergel & Steinhard(2000)[Phys.Rev.Lett. 84 (2000) 3760-3763]
 - Ostriker et al (2000)[Phys.Rev.Lett. 84 (2000) 5258-5260]
 - Dave et al (2000)[Astrophys.J. 547 (2001) 574-589]
 - Buckley & Fox (2010) [Phys.Rev. D81 (2010) 083522]
- Self Interacting WDM(SIWDM)
 - Hannestad & Scherrer(2000)[Phys. Rev. D, 62, 042522]

Kavli IPMU, Available[08/24/15]

Based on work by Hochberg, Murayama et al (2014)

Self-Interacting Dark Matter (SIDM) Cont'd.

- Spergel and Steinhardt (2000): $0.5 \text{cm}^2/\text{g} < \sigma_{\chi\chi}/\text{M}_{\chi} < 6 \text{cm}^2/\text{g}$ $8.9 \times 10^{11} \text{pb/GeV} < \sigma_{\chi\chi}/\text{M}_{\chi} < 1.1 \times 10^{13} \text{pb/GeV}$
- Wandelt et al (2000): $0.1 \, \text{cm}^2/\text{g} < \sigma_{\chi\chi}/M_{\chi} < 6 \, \text{cm}^2/\text{g}$
- Matter distribution of Bullet Cluster (Randall et al, 2008) & kinematics of dwarf spheroidal galaxies (Zavala et al, 2013) place limits on $\sigma_{\chi\chi}/M_{\chi}$

SIDM effective if $0.1 \text{ cm}^2/\text{g} < \sigma_{\chi\chi}/\text{M}_{\chi} < 1.25 \text{ cm}^2/\text{g}$

i.e. $1.79 \times 10^{11} \text{ pb/GeV} < \sigma_{\chi\chi}/M_{\chi} < 2.22 \times 10^{12} \text{ pb/GeV}$

- Very recently (April 2015), evidence for DM self-interactions from Abell 3827 (R Massey et al. 2015 & Karlhofer et al. 2015).
- Observed lagging halo after merger of 4 galaxies in the Cluster.
- Gravitational Lensing were able to constrain self interactions strength. $\sigma_{\chi\chi}/M_{\chi} \sim 1.5 \text{ cm}^2/\text{g}$

Nature of DM => UNKNOWN

- Single component?
 - Kamionkowski et al (1987), Bergstrom. L (2000), Bertone et al (2005). (Review)
 - Many different scenarios of DM.
- Multi-component?
 - Agashe et al. [JCAP 1410 (2014) 10]
 - Berger et al. [JCAP 1502 (2015) 02, 005]

Self Interacting?

- Single component?
 - Zentner et al. [Phys.Rev. D80 (2009) 063501]
 - Alberquerque et al. [JCAP 1402 (2014) 047]
 - Chen et al. [JCAP 1410 (2014) 10,049]
- Multi-component DM with Self-interactions
 - Kong, GM & Park (2014)

BASIC SETUP

- Two species of DM: ψ_A and ψ_B with $M_A > M_B$. $(eg. U(1)' \otimes U(1)'')$
- ullet ψ_A is dominant and has no direct coupling to SM
- ψ_B is sub-dominant, direct coupling to SM

BASIC FEATURES

• Relic density of ψ_A is set by annihilation into ψ_B

$$\psi_A \bar{\psi_A} \to \psi_B \bar{\psi_B} \quad \text{Assisted Freeze-out Mechanism:} \\ \quad \text{Belanger \& Park JCAP 1203(2012)038}$$

- Annihilation products, ψ_B are boosted with factor $\gamma = M_A/M_B$
- 'Boosted Dark Matter'
- Indirect detection of ψ_{A} through boosted ψ_{B}

$$\frac{1}{\Lambda^2}\bar{\psi_A}\psi_A\bar{\psi_B}\psi_B$$

Agashe et al (arXiv: 1405.7370)

• Detect boosted ψ_B through its interaction with SM

$$\mathcal{L}\supset -rac{1}{2}\,\sin\epsilon\,X_{\mu
u}F^{\mu
u}$$
 Interaction of photon with hidden Boson

- Via kinetic mixing of SM photon with hidden 'Dark' X
- Direct detection of boosted ψ_B through SM
- Indirect-direct detection of ψ_{A}

Smoking Gun for Non-Minimal DM sector.

BDM FROM GALACTIC CENTER

- Agashe et al. [JCAP 1410 (2014) 10] examine flux of BDM in GC from annihilation of ψ_{A}
- Calculate Flux using NFW density profile

$$\Phi_{GC}^{10^{\circ}} = 9.9 \times 10^{-8} cm^{-2} s^{-1} \left(\frac{\langle \sigma_{A\bar{A} \to B\bar{B}} v \rangle}{5 \times 10^{-26} cm^{3}/s} \right) \left(\frac{20 GeV}{m_{A}} \right)^{2}$$

Low Flux means need large volume detectors sensitive to

$$\psi_B + SM \to \psi_B + SM$$

Neutrino detectors: Super-K,

Hyper-K, Ice-Cube, PINGU

What about Point Sources?

BOOSTED DM FROMTHE SUN

Time evolution of number density of DM particles in sun is:

$$\frac{dN_\chi}{dt} = C_c + (C_s - C_e)N_\chi - (C_a + C_{se})N_\chi^2 \qquad \text{Chen, Lee, Lin \& Lin(2014)}$$

- * Cc: capture rate by nuclei inside Sun
- * Cs: capture rate by DM already captured in Sun
- * Ce: Evaporation rate due to DM-nuclei scattering
- * Cse: evaporation rate due to DM-self interaction
- + Ca: annihilation rate
- Sun is point source

Kong, **GM** & Park, 2014.

$$N_{\chi}(t) = \frac{C_c \tanh(t/\tau_{\rm eq})}{\tau_{\rm eq}^{-1} - (C_s - C_e) \tanh(t/\tau_{\rm eq})/2} \qquad \tau_{\rm eq} = \frac{1}{\sqrt{C_c(C_a + C_{se}) + (C_s - C_e)^2/4}},$$

$$\tau_{\rm eq} = \frac{1}{\sqrt{C_c(C_a + C_{se}) + (C_s - C_e)^2/4}}$$

 N_A^{eq} : m_B =0.2 GeV, m_X =20 MeV, ϵ =10⁻⁴, g_X =0.5

Importance of Self-Interaction

Flux of boosted DM particles

• Flux of boosted ψ_B from the Sun:

$$\frac{d\Phi_B^{\text{Sun}}}{dE_B} = \frac{\Gamma_A^{\psi_A}}{4\pi R_{\text{Sun}}^2} \frac{dN_B}{dE_B} \qquad \qquad \Gamma_A^{\psi_A} = \frac{C_a}{2} N_{\psi_A}^2$$

$$\frac{dN_B}{dE_B} = 2\delta(E_B - m_A)$$

- Annihilation of ψ_A produces 2 mono-energetic boosted ψ_B 's
- Take into account other factors, e.g. energy loss of the ψ_B particles during propagation through the sun

DETECTION OF BDM

• large volume neutrino detectors detect: $\nu_e n \to e^- p$

PINGU/Ice-Cube

- In same light BDM detected through $\psi_B e^- \to \psi_B e^-$
- Energetic electrons would produce Cherenkov light
- BDM signal seen as single Cherenkov ring

Focus on Super-K, Hyper-K and PINGU.

Experiment	Volume (MTon)	Ethres(GeV)	res(deg)
Super-K	0.0224	0.01	3
Hyper-K	0.56	0.01	3
PINGU	0.5		23
Ice-Cube	1000	100	30

 Angular resolution and energy threshold important for distinguishing Neutrino backgrounds

Signal Rates

$$N_{\text{sig}} = \Delta T \frac{10 \,\rho_{\text{target}} \,V_{\text{exp}}}{m_{\text{H}_2\text{O}}} \, \frac{2\Gamma_A^{\psi_A}}{4\pi R_{\text{Sun}}^2} \, \int_{E_e^{\text{min}}}^{E_e^{\text{max}}} dE_e \, \frac{d\sigma_{Be^- \to Be^-}}{dE_e}$$

For Super-K.

Kong, **GM** & Park, 2014.

Min self-interaction

Max self-interaction

For Hyper-K

For PINGU

Experimental Reach

• 2σ sensitivity for 10 years of Data.

Kong, **GM** & Park, 2014.

Left Edge: m_B > m_{x,}

- Top Edge: number density n_{DM}
- Right Edge: E_{max} > E_{min}
- Bottom Edge: Evaporation i.e. drop in NAeq

CONCLUSIONS & ONGOING WORK

- DM might be more complicated than previously thought.
- Multi-component scenarios, very well motivated.
- Self-interaction provides insight into several unanswered cosmological questions.
- Self interaction Important => helps enhance flux of Boosted DM.
- Consider Ice-Cube/PINGU:
 - Effective volume V_{eff}(E).
 - Angular res $\theta_{res}(E)$.
- Proper modeling of energy loss inside Sun.

Consider detection in Ice-Cube deep core and next generation PINGU.

· We consider effective volume and angular resolutions as functions of

energy of incoming particle.

Clarke et al [PINGU/Ice-Cube collaboration] 2012

Aartsen et al [PINGU/Ice-Cube collaboration] 2014

E. K. Ahmedov [arXiv: 1205.7071v1] 2013

Preliminary Results

Boosted DM from the Galactic Center

Kong, G.M & Park, in Progress.

Kong, **G.M** & Park, in Progress.

THANKYOU

BACK UP

BACKGROUND

Most background comes from Atmospheric Neutrinos.

most uniform in the sky. $\nu_e n \to e^- p$

$$N_{BG} = \Delta T\,922/year(rac{V_{exp}}{2.24 imes10^4m^3})\,$$
 For Super-K & Hyper-K

$$N_{BG} = \Delta T \, 14100/year(rac{V_{exp}}{5 imes 10^5 m^3})$$
 For PINGU

Background reduction dependent on resolution:

$$N_{BG}^{\theta_C} = \frac{1 - \cos \theta_{res}}{2} N_{BG}$$

• For Super-K:
$$\frac{N_{BG}^{3^{\circ}}}{\Delta T}=0.63/year$$
 , Hyper-K: $\frac{N_{BG}^{3^{\circ}}}{\Delta T}=15.8/year$

• PINGU:
$$\frac{N_{BG}^{23^{\circ}}}{\Delta T} = 562/year$$

Event selection

- Boosted DM particles have mono-energetic spectrum, while atmospheric neutrinos have continuous energy spectrum.
- Absence of Muon access, ψ_B -electron scattering has no Muon access, but Neutrino CC interactions have large Muon access.

$$\nu_{\mu}n \rightarrow \mu^{-}p$$

- Multi-ring veto, ψ_{B} -electron scattering induces single-ring events while neutrino scattering induces multi-ring events.
- Solar Neutrino veto, Solar neutrinos dominate background so we choose electron Energy > 100 MeV.